A functional generalized method of moments approach for longitudinal studies with missing responses and covariate measurement error BY GRACE
نویسنده
چکیده
Covariate measurement error and missing responses are typical features in longitudinal data analysis. There has been extensive research on either covariate measurement error or missing responses, but relatively little work has been done to address both simultaneously. In this paper, we propose a simple method for the marginal analysis of longitudinal data with time-varying covariates, some of which are measured with error, while the response is subject to missingness. Our method has a number of appealing properties: assumptions on the model are minimal, with none needed about the distribution of the mismeasured covariate; implementation is straightforward and its applicability is broad. We provide both theoretical justification and numerical results.
منابع مشابه
A functional generalized method of moments approach for longitudinal studies with missing responses and covariate measurement error.
Covariate measurement error and missing responses are typical features in longitudinal data analysis. There has been extensive research on either covariate measurement error or missing responses, but relatively little work has been done to address both simultaneously. In this paper, we propose a simple method for the marginal analysis of longitudinal data with time-varying covariates, some of w...
متن کاملMarginal Analysis of A Population-Based Genetic Association Study of Quantitative Traits with Incomplete Longitudinal Data
A common study to investigate gene-environment interaction is designed to be longitudinal and population-based. Data arising from longitudinal association studies often contain missing responses. Naive analysis without taking missingness into account may produce invalid inference, especially when the missing data mechanism depends on the response process. To address this issue in the ana...
متن کاملNon-parametric and semiparametric models for missing covariates in parametric regression Abstracts
s Robustness of covariate modeling for the missing covariate problem in parametric regression is studied under the MAR assumption. For a simple missing covariate pattern, non-parametric likelihood is proposed and is shown to yield a consistent and semiparametrically efficient estimator for the regression parameter. Total robustness is achieved in this situation. For more general missing covaria...
متن کاملNon-parametric and semiparametric models for missing covariates in parametric regression Abstracts
s Robustness of covariate modeling for the missing covariate problem in parametric regression is studied under the MAR assumption. For a simple missing covariate pattern, non-parametric likelihood is proposed and is shown to yield a consistent and semiparametrically efficient estimator for the regression parameter. Total robustness is achieved in this situation. For more general missing covaria...
متن کاملSimultaneous Monitoring of Multivariate Process Mean and Variability in the Presence of Measurement Error with Linearly Increasing Variance under Additive Covariate Model (RESEARCH NOTE)
In recent years, some researches have been done on simultaneous monitoring of multivariate process mean vector and covariance matrix. However, the effect of measurement error, which exists in many practical applications, on the performance of these control charts is not well studied. In this paper, the effect of measurement error with linearly increasing variance on the performance of ELR contr...
متن کامل